CHAPTER 6

Electrons in a Crystal

In the preceding chapters we considered essentially only one electron, which
was confined to the field 1e—¢ of a solid. This electron was in most
cases an outer, 1.e{a valence, electron.’ However, in a solid of one cubic

} 1 can be found. In this section we
shall describe how thése-elec are-distributed among the available energy
levels. It 1s impossible to calculate the exact place and the kinetic energy of

each individual electron. We will see, however, that probability statements
nevertheless give meaningful results.
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6.1. Fermi Energy and Fermi Surface

The Fermi energy is often defined as the “highest energy that the electrons assume at 7 =0 K.

Many of the electronic propertie% of matérials, such as optical, electrical, or )
magnetic properties, are related to the location of Er within a band. They range typically from 2 eV to 12 eV

Electronic Properties of Some Metals

Effective mass Number of free
Fermi electrons, Ny Work function
(m') ('.f_ ) energy, [clectrons] (photoelectric),
Material mg )y M0 Joo Eg [eV] m3 # [eV]
Ag 0.95 5.5 6.1 x 10%8 43
Al 0.97 1.08 11.8 16.7 x 1028 4.1
Au 1.04 5.5 5.65 x 10% 48
Be 1.6 12.0 39
Ca 1.4 3.0 2.7
Cs 1.6 1.9
Cu 1.0 1.42 7.0 6.3 x 1028 4.5
Fe 1.2 4.7
K 1.1 1.9 2.2
Li 152 4.7 2.3
Na 1.0 3.2 2.3
Ni 2.8 5.0
Zn 0.85 11.0 3 x 103 43
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6.2. Fermi Distribution Function

The kinetic energy of an electron gas is governed by Fermi—Dirac statistics,
which states that the probability that a certain energy level is occupied by
electrons is given by the Fermi function, F(E),

1 . .
. kg is the Boltzmann constant, and 7 is the absolute temperature.
expE_EF £ e e S i S S a R S :
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If an energy level E is completely occupied by electrons, the Fermi distri- bution function F(E) equals 1 (certainty)

for an empty energy level one obtains F(E) = 0.

F(E) =

-
0o | F(E)

One sees from this figure that at 7" = 0 all levels that have an energy smaller
than Ef are completely filled with electrons, whereas higher energy states are

empty.
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At high energies (E >» Ef) the upper end of the Fermi distribution func-
tion can be approximated by the classical (Boltzmann) distribution function.

el -(557)]

E “Boltzmann tail”’

AE at room temperature 1s in reality only about 1% of Ef.

0 F(E)
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6.3. Density of States

( | ) We restrict our discussion for the moment to the lower part of

the valence band (the 4s-band in copper, for example) because there the
electrons can be considered to be essentially free due to their weak binding

force to the nucleus.

(2) We assume that the free electrons (or the *“‘electron

gas’’) are confined in a square potential well from which they cannot escape.
“The dimensions of this potential well are thought to be identical to the
dimensions of the crystal under consideration. Then our problem is similar
to the case of one electron in a potential well of size a, which we treated in

Section 4.2.

§§ty[day, March 19,



242
T h 0 ;. 9 4 29
E,=5—(n.+m+n;) —energy state.
where ny,n,, and n, are the principal quantum numbers and a is now the
length, etc., of the crystal. Now we pick an arbitrary set of quantum numbers

n 1s the radius from

the origin of the coordinate system to a point (ny, n,,n;) where

. 2 2
n-=n;+n,+n;
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Representation of an energy state in quantum number space.
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Equal values of the energy E, lie on the surface of a sphere with radius ».

po-ints within the spherg' therefore represent quantu-m states with energies
smaller than E,. The number of quantum states, #, with an energy equal to
or smaller than E, is proportional to the volume of the sphere.

quantum numbers are positive integers, the n-values can only be defined 1n
the positive octant of the n-space. One-eighth of the volume of the sphere
with radius n therefore gives the number of energy states, #, the energy of

which is equal to or smaller than E,,.

,

1 4_3 T (2ma 3/2
143 2 (2 ) E

=133 6 \ 1272
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Differentiation of » with respect to the energy E provides the number of
energy states per unit energy in the energy interval dE, i.e., the density of the

energy states, briefly called density of states, Z(E):

3/2
f_’l_ n (2ma* El/2 ___K__ ki V.

dE 24l = 4 \ ;242 472 \ /2

a> is the volume, V, that the electrons can occupy

Density of states Z(E) within a band. The electrons in this band are considered to be free.
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6.4. Population Density

The number of electrons per unit energy, N(E), within an energy interval dE
can be calculated by multiplying the number of possible energy levels, Z(E),

by the probability for the occupation of these energy levels. We have to note,
however, that because of the Pauli principle, each energy state can be occu-

N(E) =2 - Z(E) - F(E)

3/2
N(E) d (-2-@) E'/? :

=§—7—t—5 hz E — Ef |
exp( T )-i—l

N (E) 1s called the (electron) population density
T — 0 and E < Ep, the function N(E) equals 2 - Z(E) because F(E) 1s unity
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Population density N(E) within a band for free electrons. dN* is the
number of electrons in the energy interval dE
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6.5. Complete Density of States Function Within a
Band (within a crystal)

the density of states is modified by the energy conditions within the
first Brillouin zone

The largest number
of energy states i1s thus found near the center of a band

o Z(E)

Schematic representation of the complete density o1 states runction within a ban
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6.6. Consequences of the Band Model

55eV
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the highest filled band
1s completely occupied

the upper bands partially
overlap

Er—— iz =
i Y _

b c d
Alkali Metol Magnesium Germanium
bivalent metals intrinsic semiconductors
the valence band should be insulators small band gap

1s essentially half-filled
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6.7. Eftective Mass

velocity of an electron 1n an energy band
~ group velocity

dw d(2nv) d(2nE/h) 1dE

BT T dk dc  hdk
_dvg _1d’Edk
“Td T hdk? dr
dp _ . dk




_1d’Edp_ 1| d’E d(mv) 1d%E
TREdkPdt R Ak drt Rk

a

where F is the force on the electron
Newton’s law F

a=—
m

m* = h* .d_z__@_

dk?

|

the effective mass is inversely proportional to the
curvature of an electron band
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Energy of the electrons with wavenumber k in graphene, calculated in the Tight
Binding-approximation. The unoccupied (occupied) states, colored in blue-red

(yellow-green), touch each other without energy gap exactly at the above-
mentioned six k-vectors.
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